Empower Sequence Labeling with Task-Aware Neural Language Model
نویسندگان
چکیده
Linguistic sequence labeling is a general modeling approach that encompasses a variety of problems, such as part-ofspeech tagging and named entity recognition. Recent advances in neural networks (NNs) make it possible to build reliable models without handcrafted features. However, in many cases, it is hard to obtain sufficient annotations to train these models. In this study, we develop a novel neural framework to extract abundant knowledge hidden in raw texts to empower the sequence labeling task. Besides wordlevel knowledge contained in pre-trained word embeddings, character-aware neural language models are incorporated to extract character-level knowledge. Transfer learning techniques are further adopted to mediate different components and guide the language model towards the key knowledge. Comparing to previous methods, these task-specific knowledge allows us to adopt a more concise model and conduct more efficient training. Different from most transfer learning methods, the proposed framework does not rely on any additional supervision. It extracts knowledge from self-contained order information of training sequences. Extensive experiments on benchmark datasets demonstrate the effectiveness of leveraging character-level knowledge and the efficiency of co-training. For example, on the CoNLL03 NER task, model training completes in about 6 hours on a single GPU, reaching F1 score of 91.71±0.10 without using any extra annotation.
منابع مشابه
Sequential Convolutional Neural Networks for Slot Filling in Spoken Language Understanding
We investigate the usage of convolutional neural networks (CNNs) for the slot filling task in spoken language understanding. We propose a novel CNN architecture for sequence labeling which takes into account the previous context words with preserved order information and pays special attention to the current word with its surrounding context. Moreover, it combines the information from the past ...
متن کاملExtracting Frame-based Knowledge Representation from Route Instructions
To build a simulated robot that follows route instructions in unconstrained natural language, we propose a frame-segment decoding algorithm that achieves two joint tasks: (1) Segment the route instruction so that the sequence of segments corresponds to a sequence of actions required to complete the task, and (2) Choose the slot fillers of the frame-based knowledge representation for each action...
متن کاملNeural Attention Models for Sequence Classification: Analysis and Application to Key Term Extraction and Dialogue Act Detection
Recurrent neural network architectures combining with attention mechanism, or neural attention model, have shown promising performance recently for the tasks including speech recognition, image caption generation, visual question answering and machine translation. In this paper, neural attention model is applied on two sequence labeling tasks, dialogue act detection and key term extraction. In ...
متن کاملNeural Word Segmentation Learning for Chinese
Most previous approaches to Chinese word segmentation formalize this problem as a character-based sequence labeling task so that only contextual information within fixed sized local windows and simple interactions between adjacent tags can be captured. In this paper, we propose a novel neural framework which thoroughly eliminates context windows and can utilize complete segmentation history. Ou...
متن کاملLabel-Dependencies Aware Recurrent Neural Networks
In the last few years, Recurrent Neural Networks (RNNs) have proved effective on several NLP tasks. Despite such great success, their ability to model sequence labeling is still limited. This lead research toward solutions where RNNs are combined with models which already proved effective in this domain, such as CRFs. In this work we propose a solution far simpler but very effective: an evoluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.04109 شماره
صفحات -
تاریخ انتشار 2017